38 research outputs found

    Turning contention into collaboration: The role of collaborative networks in natural resource governance

    Get PDF

    Measuring student mastery of sustainability competencies

    Get PDF

    Vernal Pool Conservation: Enhancing Existing Regulation Through the Creation of the Maine Vernal Pool Special Area Management Plan

    Get PDF
    Conservation of natural resources is challenging given the competing economic and ecological goals humans have for landscapes. Vernal pools in the northeastern US are seasonal, small wetlands that provide critical breeding habitat for amphibians and invertebrates adapted to temporary waters, and are exceptionally hard to conserve as their function is dependent on connections to other wetlands and upland forests. A team of researchers in Maine joined forces with a diverse array of governmental and private stakeholders to develop an alternative to existing top-down vernal pool regulation. Through creative adoption and revision of various resource management tools, they produced a vernal pool conservation mechanism, the Maine Vernal Pool Special Management Area Plan that meets the needs of diverse stakeholders from developers to ecologists. This voluntary mitigation tool uses fees from impacts to vernal pools in locally identified growth areas to fund conservation of “poolscapes” (pools plus appropriate adjacent habitat) in areas locally designated for rural use. In this case study, we identify six key features of this mechanism that illustrate the use of existing tools to balance growth and pool conservation. This case study will provide readers with key concepts that can be applied to any conservation problem: namely, how to work with diverse interests toward a common goal, how to evaluate and use existing policy tools in new ways, and how to approach solutions to sticky problems through a willingness to accept uncertainty and risk

    Actions speak louder than words: designing transdisciplinary approaches to enact solutions

    Get PDF
    Sustainability science uses a transdisciplinary research process in which academic and non-academic partners collaborate to identify a common problem and co-produce knowledge to develop more sustainable solutions. Sustainability scientists have advanced the theory and practice of facilitating collaborative efforts such that the knowledge created is usable. There has been less emphasis, however, on the last step of the transdisciplinary process: enacting solutions. We analyzed a case study of a transdisciplinary research effort in which co-produced policy simulation information shaped the creation of a new policy mechanism. More specifically, by studying the development of a mechanism for conserving vernal pool ecosystems, we found that four factors helped overcome common challenges to acting upon new information: creating a culture of learning, co-producing policy simulations that acted as boundary objects, integrating research into solution development, and employing an adaptive management approach. With an increased focus on these four factors that enable action, we can better develop the same level of nuanced theoretical concepts currently characterizing the earlier phases of transdisciplinary research, and the practical advice for deliberately designing these efforts

    Turning Contention into Collaboration: Engaging Power, Trust, and Learning in Collaborative Networks

    Get PDF
    Given the complexity and multiplicity of goals in natural resource governance, it is not surprising that policy debates are often characterized by contention and competition. Yet at times adversaries join together to collaborate to find creative solutions not easily achieved in polarizing forums. We employed qualitative interviews and a quantitative network analysis to investigate a collaborative network that formed to develop a resolution to a challenging natural resource management problem, the conservation of vernal pools. We found that power had become distributed among members, trust had formed across core interests, and social learning had resulted in shared understanding and joint solutions. Furthermore, institutions such as who and when new members joined, norms of inclusion and openness, and the use of small working groups helped create the observed patterns of power, trust, and learning

    Citizen science and natural resource governance: program design for vernal pool policy innovation

    Get PDF
    Effective natural resource policy depends on knowing what is needed to sustain a resource and building the capacity to identify, develop, and implement flexible policies. This retrospective case study applies resilience concepts to a 16-year citizen science program and vernal pool regulatory development process in Maine, USA. We describe how citizen science improved adaptive capacities for innovative and effective policies to regulate vernal pools. We identified two core program elements that allowed people to act within narrow windows of opportunity for policy transformation, including (1) the simultaneous generation of useful, credible scientific knowledge and construction of networks among diverse institutions, and (2) the formation of diverse leadership that promoted individual and collective abilities to identify problems and propose policy solutions. If citizen science program leaders want to promote social-ecological systems resilience and natural resource policies as outcomes, we recommend they create a system for internal project evaluation, publish scientific studies using citizen science data, pursue resources for program sustainability, and plan for leadership diversity and informal networks to foster adaptive governance. Effective natural resource policy depends on knowing what is needed to sustain a resource and building the capacity to identify, develop, and implement flexible policies. This retrospective case study applies resilience concepts to a 16-year citizen science program and vernal pool regulatory development process in Maine, USA. We describe how citizen science improved adaptive capacities for innovative and effective policies to regulate vernal pools. We identified two core program elements that allowed people to act within narrow windows of opportunity for policy transformation, including (1) the simultaneous generation of useful, credible scientific knowledge and construction of networks among diverse institutions, and (2) the formation of diverse leadership that promoted individual and collective abilities to identify problems and propose policy solutions. If citizen science program leaders want to promote social-ecological systems resilience and natural resource policies as outcomes, we recommend they create a system for internal project evaluation, publish scientific studies using citizen science data, pursue resources for program sustainability, and plan for leadership diversity and informal networks to foster adaptive governance

    Municipal Capacity to Respond to COVID-19: Implications for Improving Community Resilience in Maine

    Get PDF
    The authors of this article explore how 50 Maine municipalities communicated their response to COVID-19 in the earliest stages of the pandemic. The study answers two questions: (1) What information and resources did Maine municipalities communicate about COVID-19? and (2) What characterizes a more robust communication response? Analyzing digital communications from March through July 2020, the authors found almost all municipalities in our sample communicated basic information about altered town operations. Some towns provided more robust responses that evolved over time and included nuanced messages about COVID-19, a sense of community, and collaborations with partners. While smaller, more rural municipalities may have fewer residents and resources, many showed a larger-than-expected capacity to pivot quickly and rally together to respond to COVID-19 and communicate about that response

    Sustainability science graduate students as boundary spanners

    Get PDF
    Graduate training in sustainability science (SS) focuses on interdisciplinary research, stakeholder-researcher partnerships, and creating solutions from knowledge. But becoming a sustainability scientist also requires specialized training that addresses the complex boundaries implicit in sustainability science approaches to solving social-ecological system challenges. Using boundary spanning as a framework, we use a case study of the Sustainability Solutions Initiative (SSI) at the University of Maine to explicate key elements for graduate education training in SS. We used a mixed-methods approach, including a quantitative survey and autoethnographic reflection, to analyze our experiences as SSI doctoral students. Through this research, we identified four essential SS boundaries that build on core sustainability competencies which need to be addressed in SS graduate programs, including: disciplines within academia, students and their advisors, researchers and stakeholders, and place-based and generalizable research. We identified key elements of training necessary to help students understand and navigate these boundaries using core competencies. We then offer six best practice recommendations to provide a basis for a SS education framework. Our reflections are intended for academic leaders in SS who are training new scientists to solve complex sustainability challenges. Our experiences as a cohort of doctoral students with diverse academic and professional backgrounds provide a unique opportunity to reflect not only on the challenges of SS but also on the specific needs of students and programs striving to provide solutions

    Planning for Sustainability in Small Municipalities: The Influence of Interest Groups, Growth Patterns, and Institutional Characteristics

    Get PDF
    How and why small municipalities promote sustainability through planning efforts is poorly understood. We analyzed ordinances in 451 Maine municipalities and tested theories of policy adoption using regression analysis.We found that smaller communities do adopt programs that contribute to sustainability relevant to their scale and context. In line with the political market theory, we found that municipalities with strong environmental interests, higher growth, and more formal governments were more likely to adopt these policies. Consideration of context and capacity in planning for sustainability will help planners better identify and benefit from collaboration, training, and outreach opportunities

    A collaborative policy analysis of a proposed vernal pool regulatory mechanism

    Get PDF
    corecore